SUSTAINABLE SCHOOLS Roots for a New Generation: How Manitoba Schools are Reaping the Benefits of LEED #### Prairie Architects Inc. Dudley Thompson Presentation to the Manitoba Building Envelope Council Winnipeg November 17, 2014 #### SUSTAINABLE SCHOOLS #### **Roots for a New Generation:** #### How Manitoba Schools are Reaping the Benefits of LEED **Part Two: Why Green Schools** **Part Three: Early Costs and Benefits** **Part Four: International Case Studies** Part Five: Manitoba Approach **Part Six: Conclusions and Next Steps** #### Part One - Climate Change & Sustainability #### 1.1 CO₂ Emissions ### Part One – Climate Change & Sustainability #### 1.2 Water IPCC report paints bleak picture of war, famine and pestilence: 'Climate change is happening and no one in the world is immune' ### Part One - Climate Change & Sustainability 1.3 Energy IPCC Report: "Nobody on this planet is going to be untouched by the impacts of climate change." PARADIGM SHIFT Part Two - Why Green Schools - Schools are wonderful laboratories for sustainability - Children as teachers and practitioners for our sustainable future - Good prototypes to demonstrate shift in paradigms - Early LEED schools demonstrate metrics for change - Centralized administration of large numbers of similar buildings - Pressure on operating budgets to conserve \$\$ ## Part Three – Early Costs & Benefits #### 3.1 – Overall estimate | TABLE A | | |--|-------| | Financial Benefits of Green Schools (\$/ft²) | | | Energy | \$9 | | Emissions | \$1 | | Water and Wastewater | \$1 | | Increased Earnings | \$49 | | Asthma Reduction | \$3 | | Cold and Flu Reduction | \$5 | | Teacher Retention | \$4 | | Employment Impact | \$2 | | Total | \$74 | | Cost of Greening | (\$3) | | Net Financial Benefits | \$71 | - Study by Gregory Kats for USGBC - Compares financial costs and benefits of conventional vs 30 green schools based over a 20 year period - Green schools cost \$200/sf and are only 2% more than conventional (\$3/sf) - Intangibles above these savings - Net cost for green school = \$200-\$71 = \$129/sf # Part Three – Early Costs & Benefits 3.2 – Direct Savings to School Division | | Component | Saving | NPV \$/sf | |----|--------------------------|--------------------------------|-----------| | 1 | Energy Reduction | 33% or \$. 38/sf | \$9 | | 2. | Water | 32% or \$.06/sf | \$1 | | 3. | Teacher Retention | 4% better | \$4 | | 4. | Less Cost of Greening | 2% of total construction costs | (\$3) | | | NET BENEFIT TO DIVISIONS | | \$11 | ## Part Three – Early Costs and Benefits #### 3.3 -Savings to Society | | Component | Saving | NPV \$/sf | |----|---------------------------|--|-----------| | | INDOOR AIR QUALITY | 41% productivity gains | | | | TEMPERATURE CONTROL | 3 - 15% productivity gains | | | | HIGH PERFORMANCE LIGHTING | 3-15% productivity gains | | | | EMISSIONS REDUCTIONS | Less pollutants in classroom | | | 1 | Increased Earnings | 3-5% + in scores
1.4% lifetime earnings | \$49 | | 2. | Asthma Reduction | 25% in green schools | \$3 | | 3. | Cold & Flu Reduction | 51% in green schools | \$5 | | 4. | Employment Impact | More jobs in green economy | \$2 | | | NET BENEFIT TO SOCIETY | | \$59 | ## Part Three – Early Costs and Benefits #### 3.4 - Non-Quantified Benefits | | Component | Saving | | |----|-------------------------------|-----------------------------|--| | 1 | Reduced Teacher sick days | 7% better attendance | | | 2. | Reduced O and M costs | \$8/sf reduction | | | 3. | Reductions in demo & waste | 74% reduction | | | 4. | Insurance Benefits | Mold reductions/lower risks | | | 5. | Improving Equity | Improves health for poor | | | 6. | Generating System Reliability | Reduces overall power needs | | | 7. | Heat Island | Lower ambient temps in area | | | | | | | ## Part Four - International Case Studies | | PROJECT | LEED | E
kWh/sm | |----|-----------------------------|----------|-------------| | 1 | Bethke Elementary, Colorado | Platinum | 132.4 | | | | Platinum | 125.1 | | 3. | Kiowa County, Kansas | Platinum | 92.0 | | | David Suzuki, Windsor | Platinum | 78.8 | | 5. | Hood River Middle, Portland | Platinum | 75.6 | #### Part Four - International Case Studies 4.1 Bethke Elementary School – Colorado USA LEED PLATINUM 132kWh/sm EAST-WEST ORIENTATION FOR SOLAR NATURAL DAYLIGHTING #### **GROUND SOURCE HEAT PUMP ONLY** TABLE 1 METRICS FOR NEW PSD BUILDINGS | The Poudre School District's seven newest buildings, constructed according to the district's sustainability design guidelines, all achieve high efficiency and high ENERGY STAR ratings. | | |--|--| | May Peak | | | Building | Year
Constructed | Floor Area
(ft ²) | Max Peak
Demand
(W/ft²) | Energy Cost
(\$/ft ² -yr) | Energy Use
(kBtu/ft²-yr) | ENERGY STAR
Rating | |--------------------------|---------------------|----------------------------------|-------------------------------|---|-----------------------------|-----------------------| | Operations Office | 2002 | 8,753 | 3.4 | 0.44 | 19.0 | 99 | | Zach Elementary* | 2002 | 67,412 | 1.7 | 0.54 | 42.6 | 96 | | Bacon Elementary | 2003 | 65,299 | 1.6 | 0.54 | 45.7 | 97 | | Fossil Ridge High School | 2004 | 296,375 | 2.3 | 0.56 | 40.9 | 94 | | Kinard Middle | 2006 | 112,735 | 2.6 | 0.39 | 21.6 | 98 | | Rice Elementary | 2007 | 62,691 | 1.4 | 0.75 | 41.5 | 99 | | Bethke Elementary | 2008 | 62,691 | 1.5 | 0.58 | 41.7 | 99 | | | | | | *Includo | n 7 200 #2 of mor | dular eleccroome | **GREEN**POWER **DISPLACEMENT VENTILATION** #### Part Four — International Case Studies 4.2 Kensington High School - Chicago USA LEED PLATINUM 125 kWh/sm **RAINWATER HARVESTING SAVES 65%** 96% OF SPACES MEET LEED DAYLIGHTING #### ENERGY AT A GLANCE Annual Energy Use Intensity (EUI) (Site) 39,74 kBtu/ft² Natural Gas 1.62 kBtu/ft2 Electricity 38.12 kBtu/ft2 Annual Source Energy 129 kBtu/ft2 Annual Energy Cost Index (ECI) \$1.10/ft2 Savings vs. Standard 90.1-2004 Design Building 46% **ENERGY STAR Rating 75** Heating Degree Days (base 65°F) 4,082 Cooling Degree Days (base 65'F) 1.423 Average Operating Hours per Week 55, plus community functions in the theater and gymnasium #### WATER AT A GLANCE Predicted Annual Water Use 367,750 gallons ote: Actual annual water use is not available becau 35% RECYCLED MATERIALS #### **4 YEAR GEOTHERMAL PAYBACK** #### Part Four - International Case Studies 4.3 Kiowa County School - Kansas USA LEED PLATINUM 92 kWh/sm **INTEGRATED DESIGN PROCESS** 125,000 WATER **CISTERN** **ARCHITECT: BNIM Architects** NO ELECTRIC LIGHT DURING DAY PASSIVE DESIGN FOCUS #### Part Four — International Case Studies #### 4.4 David Suzuki School - Windsor CAN LEED PLATINUM 79 kWh/sm #### WATER AT A GLANCE Annual Water Use 94,822 gallons Electricity (From Grid) 25 kBtu/ft2* Annual Source Energy 84 kBtu/ft² Predicted Annual On-Site Solar Energy Exported 2.9 kBtu/ft2** Savings vs. Canada's Model National Reference Building, 63% as compared to calibrated paseline model ENERGY STAR Rating 82 n-site wind turbines. The amount of electricity from the wind turbines is unknown because the e not separately metered, * * Based on RETScreen model. 36kW PV **SOLAR HOT WATER** **SOLAR WALL FOR PRE-HEAT** **GREEN ROOF &** LIVING WALL 64% ENERGY **SAVINGS OR** \$80,000/YR SCHOOL AS A **TEACHING TOOL** ARCHITECT: McLean & Associates #### Part Four - International Case Studies 4.5 Hood River Middle School - Portland USA LEED PLATINUM 75 kWh/sm 101% CO2 REDUCTION 95% WASTE RECYCLED ON SITE 35KW SOLAR PV PROVIDES 100% OF ENERGY 88% WATER SAVED WITH RAINWATER CISTERNS PRAIRIE ARCHITECTS INC. **ARCHITECT: OPSIS Architects** ### Part Five – Manitoba Approach 5.1 - PSFB Mandate #### **PSFB Design Principles** - Liveability - Energy Efficiency - Durability #### **PSFB Directives:** - ·LEED Gold - •Energy 33% better than mNEBC - Integrated Design Process - Efficient Planning - Exceed Green Building Policy - Commissioning 11 new schools in process following PSFB principles ### Part Five - Manitoba Approach 5.1 - PSFB Mandate | PROJECT | LEED | E
KBtu/sf | E
kWh/sm | |---------------------------|------|--------------|-------------| | CANADIAN AVERAGE | | 88.7 | 279.0 | | ZERO ENERGY CAPABLE (NBI) | | 34.0 | 107.0 | | MANITOBA HYDRO PLACE | | 27.9 | 88.0 | #### Part Five – Manitoba Approach 5.2 Manitoba Case Study 1: Northlands Parkway Collegiate, Winkler Prairie Architects Inc LEED GOLD (t) 86 kWh/sm 95% ROOMS NATURAL DAYLIGHT **75% WASTE DIVERSION** 35% LOCAL 35% LOCAL MATERIALS 61.4% ENERGY COST SAVING #### Part Five - Manitoba Approach 5.3 Manitoba Case Study 1: Northlands Parkway Collegiate, Winkler Prairie Architects Inc LEED GOLD (t) 86 kWh/sm **49% WATER** REDUCTION TRIPLE GLAZED WINDOWS **LOWER PLANT COSTS** E002M02 - Pnl_LP1B fed from panel DP1A(E2.2 Northlands Parkway Collegiate 495.49 kWh 3109.41 kWh **DISPLACEMENT VENTILAT** **REAL TIME DIGITAL MONITORING** #### Part Five - Manitoba Approach 5.4 Manitoba Case Study 2: Amber Trails Community School, Winnipeg Prairie Architects Inc LEED GOLD (t) 95 kWh/sm THERMAL MASS INTERIORS ### LARGE WINDOWS FOR 95% NATURAL DAYLIGHTING #### **ELECTRIC VEHICLE CHARGING** **52% ENERGY SAVINGS** ### Part Five – Manitoba Approach 5.5 Manitoba Case Study 2: Amber Trails Community School, Winnipeg Prairie Architects Inc LEED GOLD (t) 95 kWh/sm **40% WATER REDUCTION RAINWATER COLLECTION** **FULL RADIANT FLOOR FOR EVEN HEAT** 95% MATERIALS RECYCLED #### 6.1 - Results so Far - Meeting PSFB targets - Manitoba Schools some of the best energy savings in the world | | PROJECT | LEED | E | E | |----|-----------------------------|----------|---------|--------| | | | | KBtu/sf | kWh/sm | | | CANADIAN AVERAGE | | 88.7 | 279.0 | | | ZERO ENERGY CAPABLE (NBI) | | 34.0 | 107.0 | | | MANITOBA HYDRO PLACE | | 27.9 | 88.0 | | | | | | | | 1 | Bethke Elementary, Colorado | Platinum | 42.0 | 132.4 | | 2. | Kensington High, Chicago | Platinum | 39.7 | 125.1 | | 3. | Kiowa County, Kansas | Platinum | 29.2 | 92.0 | | 4. | David Suzuki, Windsor | Platinum | 25.0 | 78.8 | | 5. | Hood River Middle, Portland | Platinum | 24.0 | 75.6 | | | | | | | | | Amber Trails, Winnipeg | Gold (t) | 30.5 | 95.0 | | | Northlands Parkway, Winkler | Gold (t) | 27.4 | 86.5 | | | | | | | | | NZE Prototype, Los Angeles | Platinum | 14.2 | 44.7 | Confirmation of health benefits. #### 6.2 - Lessons Learned - Owners committed to making a difference - Owners also want systems to work - Complexity of interface of systems - Takes time and patience for full operation - Ownership when client & students involved - Commissioning is key - Interface of mechanical systems and BMS - Measurement and Verification essential - Geothermal / heat pump fine tuning - Rainwater cistern collection works - Triple glazing savings from plant size reduction - Exterior blinds education of local authorities - Moved so far in such a short time - Emerging formula for design components - Plateau in energy/water savings- new challenge Future Communities: "we will be living in denser communities, driving smaller cars, living more frugally and locally. Get ready for a smaller world. Soon, your food is going to come from a field much closer to home...your neighbours and neighbourhood are about to get a lot more important in a smaller world in the not-too-distant future...and don't be surprised if the new smaller world that emerges isn't a lot more enjoyable and liveable than the one we are about to leave behind".(WHY 22-24) **Dropping costs of renewables** ## 6.4 – What can we do better? RECOMMENDATION 1: Benchmark Performance - Benchmarking is law in NYC buildings - Energy Labels mandatory in all European buildings - Energy Star Portfolio Manager 40% US offices - Benchmark Energy intensity of all Manitoba Schools Manitoba concentrating on new schools What about existing schools? 95% of inventory? 6.5 - What can we do better? **RECOMMENDATION 2: Transparent Post-Occupancy Review** - Tell the truth about our buildings - Share lessons learned transparency - Learn from our mistakes - Allow failure and vulnerability - Celebrate success together #### Post-Occupancy Evaluation Opportunities | Why? | How? | What? | |---|---|--| | Valuating herbitrary facility tredge & bitcomes (passent start, and organizational) is a key part of the fall passen. | Mass PUIs and some form of
numeric reside observation, and
intervenes to ladder understand
the occupant experience. | A tooled for a cyclomolic messer of
healthcare facultates | | William partic In accepte standary, Way fee good wigo to occurs and make elementary unable to the metacry to other fears projectic and I allow of three through due to use of time, procuree, or other fectors | Democratic collected through restrain report of such rec- - (couplett surveys) - ment observations: - vitaryenes and from groups; and - matrics to evaluate outcomes aguined established targets. | A statemations SSD focused Pens
Occupantly Explanation (PCE) in
environment resulting its
foodbase school per primarily for
the opportunities
the early of restrict tipo our
accessing testings and
an ability to reserve effectively
share edecing tearned. | 6.6 – What can we do better? **RECOMMENDATION 3: Troubleshoot & Quantify Innovation** - Innovation has risks - Longer start-up period - Owners want performance - Metrics to confirm sustainability - Third Party to monitor innovation - Manitoba Hydro Power Smart swat team to troubleshoot, calibrate and quantify long-term metrics of sustainability for Manitoba schools - Example of MH Place evolution 6.7 – What can we do better? RECOMMENDATION 4: Develop Environmentally Responsive Prototype - Design based on environmental thermodynamics like M Hydro Place - Holistic and resilient - Focus on passive and regerative designs - Net zero water/ net zero energy - Biodiversity and biophillia - Living Building Challenge 6.8 – What can we do better? RECOMMENDATION 4: Develop Environmentally Responsive Prototype Manitoba Hydro Place, Wpg LEED PLATINUM 88 kWh/sm 6.8 - What can we do better? **RECOMMENDATION 4: Develop Environmentally Responsive Prototype** 0.6 Air changes/hr 120 kWh/sm Oakmeadow Primary Wolverhampton UK Passivhaus Certified 6.8 – What can we do better? RECOMMENDATION 4: Develop Environmentally Responsive Prototype NZE K-12 Prototype, LA LEED PLATINUM 44 kWh/sm 6.8 – What can we do better? RECOMMENDATION 4: Develop Environmentally Responsive Prototype Regenerative Passive Charles de Gaulle School Damascus Lebanon Transsolar 6.9 - Vision for the Future - Conclusions Health Beauty Passive Design Regeneration