SUSTAINABLE SCHOOLS

Roots for a New Generation:
How Manitoba Schools are Reaping the Benefits of LEED

Prairie Architects Inc.

Dudley Thompson
Presentation to the
Manitoba Building Envelope Council
Winnipeg November 17, 2014

SUSTAINABLE SCHOOLS

Roots for a New Generation:

How Manitoba Schools are Reaping the Benefits of LEED

Part Two: Why Green Schools

Part Three: Early Costs and Benefits

Part Four: International Case Studies

Part Five: Manitoba Approach

Part Six: Conclusions and Next Steps

Part One - Climate Change & Sustainability

1.1 CO₂ Emissions

Part One – Climate Change & Sustainability

1.2 Water

IPCC report paints bleak picture of war, famine and pestilence: 'Climate change is happening and no one in the world is immune'

Part One - Climate Change & Sustainability

1.3 Energy

IPCC Report: "Nobody on this planet is going to be untouched by the impacts of climate change."

PARADIGM SHIFT

Part Two - Why Green Schools

- Schools are wonderful laboratories for sustainability
- Children as teachers and practitioners for our sustainable future
- Good prototypes to demonstrate shift in paradigms
- Early LEED schools demonstrate metrics for change
- Centralized administration of large numbers of similar buildings
- Pressure on operating budgets to conserve \$\$

Part Three – Early Costs & Benefits

3.1 – Overall estimate

TABLE A	
Financial Benefits of Green Schools (\$/ft²)	
Energy	\$9
Emissions	\$1
Water and Wastewater	\$1
Increased Earnings	\$49
Asthma Reduction	\$3
Cold and Flu Reduction	\$5
Teacher Retention	\$4
Employment Impact	\$2
Total	\$74
Cost of Greening	(\$3)
Net Financial Benefits	\$71

- Study by Gregory Kats for USGBC
- Compares financial costs and benefits of conventional vs 30 green schools based over a 20 year period
- Green schools cost \$200/sf and are only 2% more than conventional (\$3/sf)
- Intangibles above these savings
- Net cost for green school = \$200-\$71 = \$129/sf

Part Three – Early Costs & Benefits 3.2 – Direct Savings to School Division

	Component	Saving	NPV \$/sf
1	Energy Reduction	33% or \$. 38/sf	\$9
2.	Water	32% or \$.06/sf	\$1
3.	Teacher Retention	4% better	\$4
4.	Less Cost of Greening	2% of total construction costs	(\$3)
	NET BENEFIT TO DIVISIONS		\$11

Part Three – Early Costs and Benefits

3.3 -Savings to Society

	Component	Saving	NPV \$/sf
	INDOOR AIR QUALITY	41% productivity gains	
	TEMPERATURE CONTROL	3 - 15% productivity gains	
	HIGH PERFORMANCE LIGHTING	3-15% productivity gains	
	EMISSIONS REDUCTIONS	Less pollutants in classroom	
1	Increased Earnings	3-5% + in scores 1.4% lifetime earnings	\$49
2.	Asthma Reduction	25% in green schools	\$3
3.	Cold & Flu Reduction	51% in green schools	\$5
4.	Employment Impact	More jobs in green economy	\$2
	NET BENEFIT TO SOCIETY		\$59

Part Three – Early Costs and Benefits

3.4 - Non-Quantified Benefits

	Component	Saving	
1	Reduced Teacher sick days	7% better attendance	
2.	Reduced O and M costs	\$8/sf reduction	
3.	Reductions in demo & waste	74% reduction	
4.	Insurance Benefits	Mold reductions/lower risks	
5.	Improving Equity	Improves health for poor	
6.	Generating System Reliability	Reduces overall power needs	
7.	Heat Island	Lower ambient temps in area	

Part Four - International Case Studies

	PROJECT	LEED	E kWh/sm
1	Bethke Elementary, Colorado	Platinum	132.4
		Platinum	125.1
3.	Kiowa County, Kansas	Platinum	92.0
	David Suzuki, Windsor	Platinum	78.8
5.	Hood River Middle, Portland	Platinum	75.6

Part Four - International Case Studies

4.1 Bethke Elementary School – Colorado USA LEED PLATINUM 132kWh/sm

EAST-WEST ORIENTATION FOR SOLAR

NATURAL DAYLIGHTING

GROUND SOURCE HEAT PUMP ONLY

TABLE 1 METRICS FOR NEW PSD BUILDINGS

The Poudre School District's seven newest buildings, constructed according to the district's sustainability design guidelines, all achieve high efficiency and high ENERGY STAR ratings.	
May Peak	

Building	Year Constructed	Floor Area (ft ²)	Max Peak Demand (W/ft²)	Energy Cost (\$/ft ² -yr)	Energy Use (kBtu/ft²-yr)	ENERGY STAR Rating
Operations Office	2002	8,753	3.4	0.44	19.0	99
Zach Elementary*	2002	67,412	1.7	0.54	42.6	96
Bacon Elementary	2003	65,299	1.6	0.54	45.7	97
Fossil Ridge High School	2004	296,375	2.3	0.56	40.9	94
Kinard Middle	2006	112,735	2.6	0.39	21.6	98
Rice Elementary	2007	62,691	1.4	0.75	41.5	99
Bethke Elementary	2008	62,691	1.5	0.58	41.7	99
				*Includo	n 7 200 #2 of mor	dular eleccroome

GREENPOWER

DISPLACEMENT VENTILATION

Part Four — International Case Studies

4.2 Kensington High School - Chicago USA LEED PLATINUM 125 kWh/sm

RAINWATER HARVESTING SAVES 65%

96% OF SPACES MEET LEED DAYLIGHTING

ENERGY AT A GLANCE

Annual Energy Use Intensity (EUI) (Site) 39,74 kBtu/ft² Natural Gas 1.62 kBtu/ft2

Electricity 38.12 kBtu/ft2

Annual Source Energy 129 kBtu/ft2 Annual Energy Cost Index (ECI) \$1.10/ft2

Savings vs. Standard 90.1-2004

Design Building 46%

ENERGY STAR Rating 75

Heating Degree Days (base 65°F) 4,082

Cooling Degree Days (base 65'F) 1.423

Average Operating Hours per Week 55, plus community functions in the theater and gymnasium

WATER AT A GLANCE

Predicted Annual Water Use 367,750 gallons

ote: Actual annual water use is not available becau

35% RECYCLED MATERIALS

4 YEAR GEOTHERMAL PAYBACK

Part Four - International Case Studies

4.3 Kiowa County School - Kansas USA LEED PLATINUM 92 kWh/sm

INTEGRATED DESIGN PROCESS

125,000 WATER **CISTERN**

ARCHITECT: BNIM Architects

NO ELECTRIC LIGHT DURING DAY

PASSIVE DESIGN FOCUS

Part Four — International Case Studies

4.4 David Suzuki School - Windsor CAN LEED PLATINUM 79 kWh/sm

WATER AT A GLANCE

Annual Water Use 94,822 gallons

Electricity (From Grid) 25 kBtu/ft2* Annual Source Energy 84 kBtu/ft²

Predicted Annual On-Site Solar Energy Exported 2.9 kBtu/ft2**

Savings vs. Canada's Model National Reference Building, 63% as compared

to calibrated paseline model ENERGY STAR Rating 82

n-site wind turbines. The amount of electricity from the wind turbines is unknown because the e not separately metered,

* * Based on RETScreen model.

36kW PV **SOLAR HOT WATER**

SOLAR WALL FOR PRE-HEAT

GREEN ROOF & LIVING WALL

64% ENERGY **SAVINGS OR** \$80,000/YR

SCHOOL AS A **TEACHING TOOL**

ARCHITECT: McLean & Associates

Part Four - International Case Studies

4.5 Hood River Middle School - Portland USA LEED PLATINUM 75 kWh/sm

101% CO2 REDUCTION

95% WASTE RECYCLED ON SITE

35KW SOLAR PV PROVIDES 100% OF ENERGY

88% WATER SAVED WITH RAINWATER CISTERNS

PRAIRIE ARCHITECTS INC.

ARCHITECT: OPSIS Architects

Part Five – Manitoba Approach

5.1 - PSFB Mandate

PSFB Design Principles

- Liveability
- Energy Efficiency
- Durability

PSFB Directives:

- ·LEED Gold
- •Energy 33% better than mNEBC
- Integrated Design Process
- Efficient Planning
- Exceed Green Building Policy
- Commissioning

11 new schools in process following PSFB principles

Part Five - Manitoba Approach

5.1 - PSFB Mandate

PROJECT	LEED	E KBtu/sf	E kWh/sm
CANADIAN AVERAGE		88.7	279.0
ZERO ENERGY CAPABLE (NBI)		34.0	107.0
MANITOBA HYDRO PLACE		27.9	88.0

Part Five – Manitoba Approach

5.2 Manitoba Case Study 1: Northlands Parkway Collegiate, Winkler Prairie Architects Inc LEED GOLD (t) 86 kWh/sm

95% ROOMS NATURAL DAYLIGHT

75% WASTE DIVERSION

35% LOCAL

35% LOCAL MATERIALS

61.4% ENERGY COST SAVING

Part Five - Manitoba Approach

5.3 Manitoba Case Study 1: Northlands Parkway Collegiate, Winkler Prairie Architects Inc LEED GOLD (t) 86 kWh/sm

49% WATER REDUCTION

TRIPLE GLAZED WINDOWS **LOWER PLANT COSTS**

E002M02 - Pnl_LP1B fed from panel DP1A(E2.2 Northlands Parkway Collegiate 495.49 kWh 3109.41 kWh

DISPLACEMENT VENTILAT

REAL TIME DIGITAL MONITORING

Part Five - Manitoba Approach

5.4 Manitoba Case Study 2: Amber Trails Community School, Winnipeg Prairie Architects Inc LEED GOLD (t) 95 kWh/sm

THERMAL MASS INTERIORS

LARGE WINDOWS FOR 95% NATURAL DAYLIGHTING

ELECTRIC VEHICLE CHARGING

52% ENERGY SAVINGS

Part Five – Manitoba Approach

5.5 Manitoba Case Study 2: Amber Trails Community School, Winnipeg Prairie Architects Inc LEED GOLD (t) 95 kWh/sm

40% WATER REDUCTION RAINWATER COLLECTION

FULL RADIANT FLOOR FOR EVEN HEAT

95% MATERIALS RECYCLED

6.1 - Results so Far

- Meeting PSFB targets
- Manitoba Schools some of the best energy savings in the world

	PROJECT	LEED	E	E
			KBtu/sf	kWh/sm
	CANADIAN AVERAGE		88.7	279.0
	ZERO ENERGY CAPABLE (NBI)		34.0	107.0
	MANITOBA HYDRO PLACE		27.9	88.0
1	Bethke Elementary, Colorado	Platinum	42.0	132.4
2.	Kensington High, Chicago	Platinum	39.7	125.1
3.	Kiowa County, Kansas	Platinum	29.2	92.0
4.	David Suzuki, Windsor	Platinum	25.0	78.8
5.	Hood River Middle, Portland	Platinum	24.0	75.6
	Amber Trails, Winnipeg	Gold (t)	30.5	95.0
	Northlands Parkway, Winkler	Gold (t)	27.4	86.5
	NZE Prototype, Los Angeles	Platinum	14.2	44.7

Confirmation of health benefits.

6.2 - Lessons Learned

- Owners committed to making a difference
- Owners also want systems to work
- Complexity of interface of systems
- Takes time and patience for full operation
- Ownership when client & students involved
- Commissioning is key
- Interface of mechanical systems and BMS
- Measurement and Verification essential
- Geothermal / heat pump fine tuning
- Rainwater cistern collection works
- Triple glazing savings from plant size reduction
- Exterior blinds education of local authorities
- Moved so far in such a short time
- Emerging formula for design components
- Plateau in energy/water savings- new challenge

Future Communities: "we will be living in denser communities, driving smaller cars, living more frugally and locally. Get ready for a smaller world. Soon, your food is going to come from a field much closer to home...your neighbours and neighbourhood are about to get a lot more important in a smaller world in the not-too-distant future...and don't be surprised if the new smaller world that emerges isn't a lot more enjoyable and liveable than the one we are about to leave behind".(WHY 22-24)

Dropping costs of renewables

6.4 – What can we do better? RECOMMENDATION 1: Benchmark Performance

- Benchmarking is law in NYC buildings
- Energy Labels mandatory in all European buildings
- Energy Star Portfolio Manager 40% US offices
- Benchmark Energy intensity of all Manitoba Schools

Manitoba concentrating on new schools What about existing schools? 95% of inventory?

6.5 - What can we do better?

RECOMMENDATION 2: Transparent Post-Occupancy Review

- Tell the truth about our buildings
- Share lessons learned transparency
- Learn from our mistakes
- Allow failure and vulnerability
- Celebrate success together

Post-Occupancy Evaluation Opportunities

Why?	How?	What?
Valuating herbitrary facility tredge & bitcomes (passent start, and organizational) is a key part of the fall passen.	Mass PUIs and some form of numeric reside observation, and intervenes to ladder understand the occupant experience.	A tooled for a cyclomolic messer of healthcare facultates
William partic In accepte standary, Way fee good wigo to occurs and make elementary unable to the metacry to other fears projectic and I allow of three through due to use of time, procuree, or other fectors	Democratic collected through restrain report of such rec- - (couplett surveys) - ment observations: - vitaryenes and from groups; and - matrics to evaluate outcomes aguined established targets.	A statemations SSD focused Pens Occupantly Explanation (PCE) in environment resulting its foodbase school per primarily for the opportunities the early of restrict tipo our accessing testings and an ability to reserve effectively share edecing tearned.

6.6 – What can we do better?

RECOMMENDATION 3: Troubleshoot & Quantify Innovation

- Innovation has risks
- Longer start-up period
- Owners want performance
- Metrics to confirm sustainability
- Third Party to monitor innovation
- Manitoba Hydro Power Smart swat team to troubleshoot, calibrate and quantify long-term metrics of sustainability for Manitoba schools
- Example of MH Place evolution

6.7 – What can we do better?

RECOMMENDATION 4: Develop Environmentally Responsive Prototype

- Design based on environmental thermodynamics like M Hydro Place
- Holistic and resilient
- Focus on passive and regerative designs
- Net zero water/ net zero energy
- Biodiversity and biophillia
- Living Building Challenge

6.8 – What can we do better?

RECOMMENDATION 4: Develop Environmentally Responsive Prototype

Manitoba Hydro Place, Wpg LEED PLATINUM 88 kWh/sm

6.8 - What can we do better?

RECOMMENDATION 4: Develop Environmentally Responsive Prototype

0.6 Air changes/hr 120 kWh/sm

Oakmeadow Primary Wolverhampton UK Passivhaus Certified

6.8 – What can we do better?

RECOMMENDATION 4: Develop Environmentally Responsive Prototype

NZE K-12 Prototype, LA LEED PLATINUM 44 kWh/sm

6.8 – What can we do better?

RECOMMENDATION 4: Develop Environmentally Responsive Prototype

Regenerative Passive

Charles de Gaulle School Damascus Lebanon Transsolar

6.9 - Vision for the Future - Conclusions

Health Beauty Passive Design Regeneration

