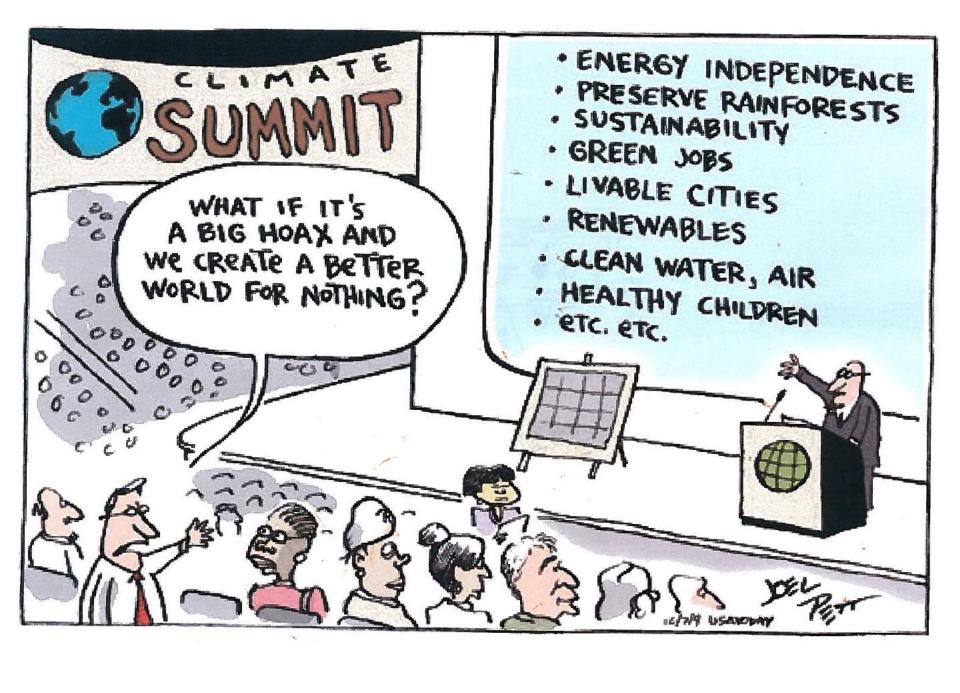
Navigating MECB Building Envelope Requirements

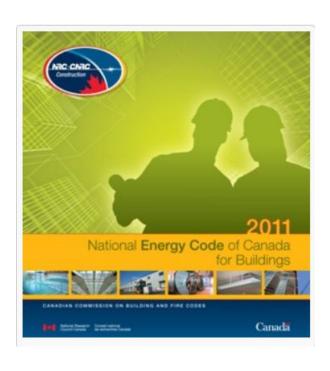

Harry Schroeder Manitoba Hydro

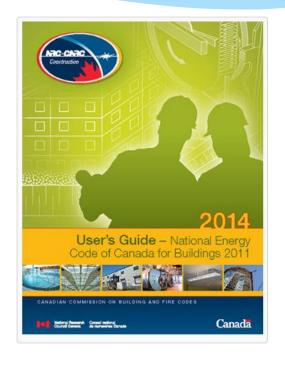
December 9, 2015

The Path to Energy Efficiency

- * Conviction
- Compulsory Targets
- * Communication
- * Compliance
- * Cash

The cornerstone of a viable Energy Policy for Europe European Energy Efficiency Industrial Forum 2010




Think about it...

No single raindrop believes itself responsible for the flood

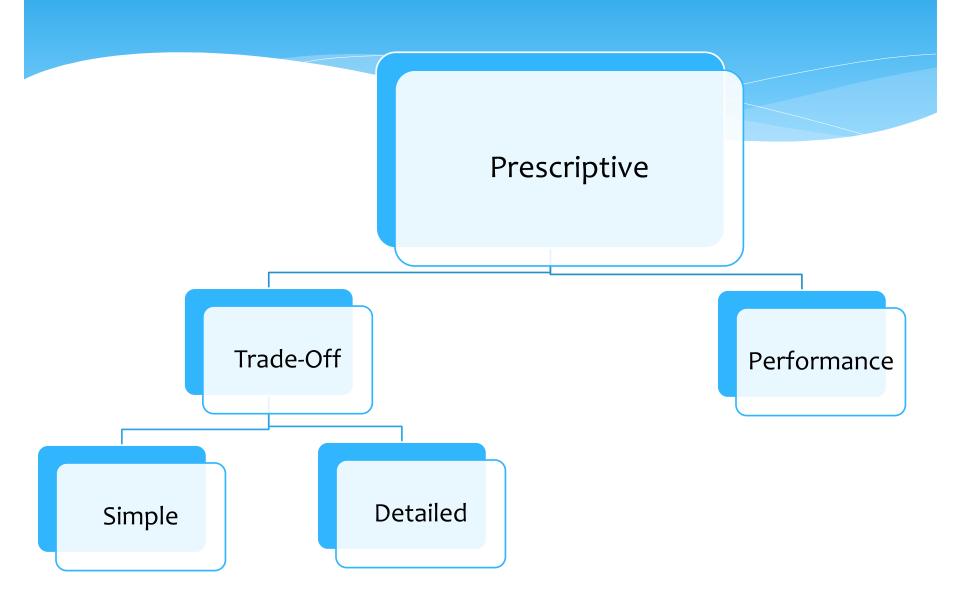
I thought – why doesn't someone do something? – then I realized I was someone

Energy Code Documents

Province of Manitoba Amendments: http://web2.gov.mb.ca/laws/regs/current/_pdf-regs.php?reg=213/2013

Energy Code Documents

Which Code Applies? (General Guideline*)


For any Part 3 Building → NECB

For Part 9 Buildings

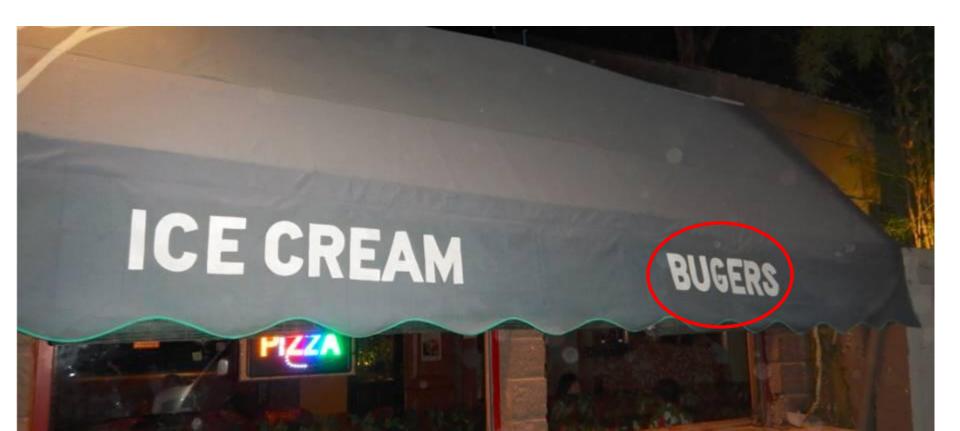
- C. (600 m₂ or less) → Section 9.36
- C. $(300m2) + \{.D. + .E. + .F3.\} (300m2 \text{ or less}) \rightarrow Section 9.36$
- C. (any area) + {.D. + .E. + .F3.) (> 300m2) → NECB
- {.D. + .E. + .F3.} (300m2 or less) → Section 9.36
- {.D. + .E. + .F3.} > 300m2 → NECB
- F2. (any area) + {.C. + .D. + .E. + .F3.} (any area) \rightarrow NECB

^{*}confirm with your AHJ

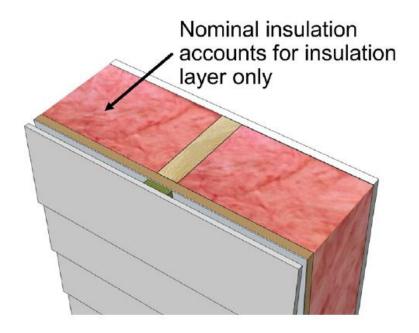
Compliance Options

- * U value Thermal Transmittance/CondUctivity
- * Rsi Thermal Resistance (SI/metric)
- * Rimp Thermal Resistance (imperial)

$$R = \frac{1}{U}$$

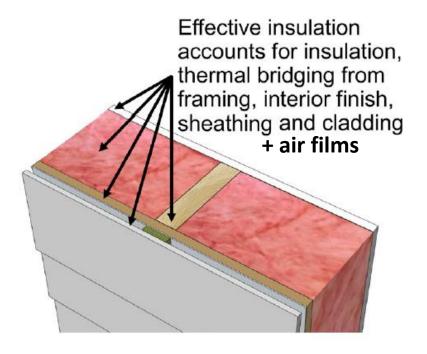

$$U = \frac{1}{R}$$

$$U_{si} = U_{imp} \times 5.678$$


Rimp=Rsi
$$\times 5.678$$

- * Effective vs Nominal
- * Wood vs Steel Stud
- Metal Framing
- Material properties resources
- * Assembly properties resources
 - * ASHRAE Fundamentals Handbook(s)

* "R" is important



Nominal Insulation

Nominal insulation accounts only for thermal resistance of the insulation.


Effective Insulation

Coming soon to a distributor near you ... or not

http://cwc.ca/resources/wall-thermal-design/search-go-to-the-calculator/

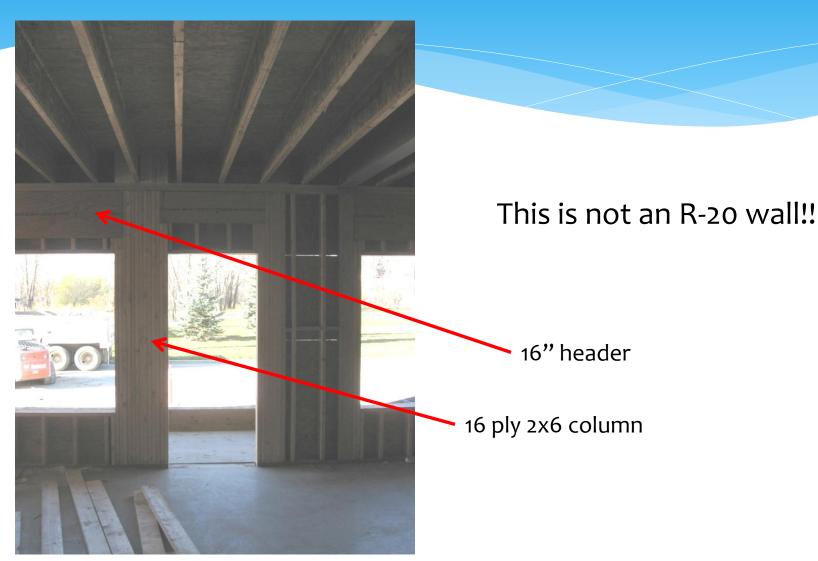
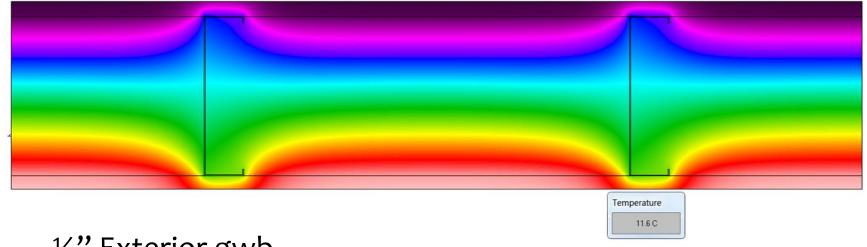



Table 3-3
Effective RSI Values of the Insulation/Framing Layer in Metal-frame Wall Assemblies(1)

Nominal Depth of Cavity,	Actual Depth of Cavity, mm	Rated RSI Value of Air Space or Insulation	Effective Framing/Cavity RSI Value at 406 mm o.c.	Effective Framing/Cavity RS! Value at 610 mm o.c.
		Empty Cavity, No Insulation		
100	89	0.16	0.14	0.16
W		Insulated Cavity	<u> </u>	
100	89	1.94	0.97	1.16
100	89	2.29	1.06	1.27
100	89	2.64	1.13	1.37
150	152	3.35	1.25	1.51
150	152	3.70	1.30	1.58
200	203	4.40	1.37	1.69

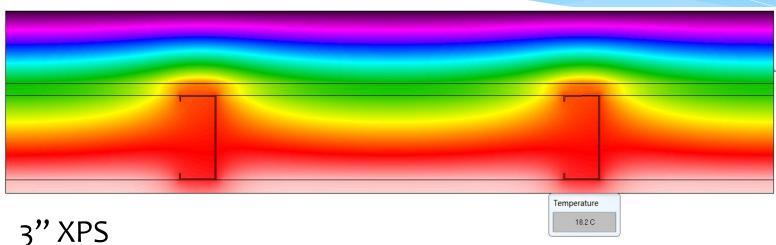
⁽¹⁾ This Table is reproduced from ANSI/ASHRAE/IES 90.1-2010 with permission (@ASHRAE).

½" Exterior gwb6" ss @ 16" o/c6" glass fibre batt½" gwb

Surface Temperature = 11.6 C Reffective = 10.3 Wall thickness = 7.0"

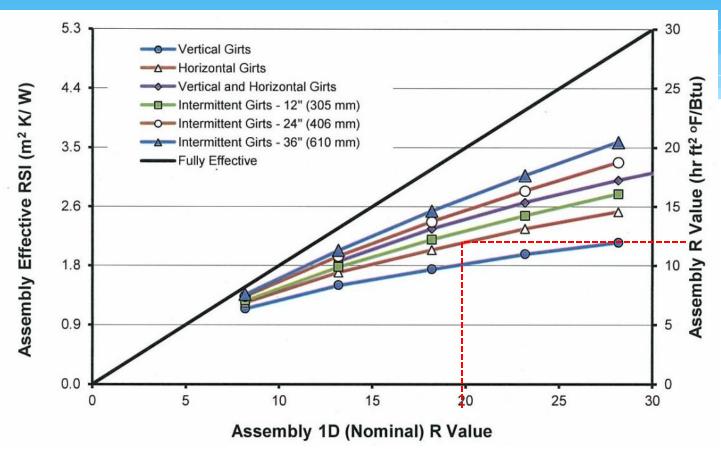
https://windows.lbl.gov/software/therm/therm.html

* "Steel studs are designed to provide the maximum possible conductive energy transfer across a wall using the minimum amount of material — a thin web with cleverly designed heat transfer fins (flanges) on both sides to efficiently absorb heat on one side and reject it on the other. [...] It is pointless to insulate the cavity to fight this efficiency of heat transfer."


-Joseph W. Lstiburek, Ph.D., in ASHRAE Journal

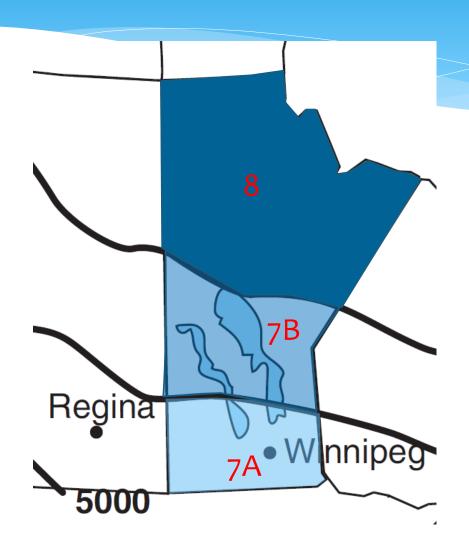
Calculating Overall Thermal Transmittance (The "bigger" steel stud approach)

Adding More Insulation to Steel Stud Assemblies to go from an "Effective" R-value of R-15.6 to R-20


Building Type	Incremental Construction Cost	Energy Cost Savings	Payback (years)
Commercial Office	\$ 94,825	\$ 1,116	85
High-Rise MURB	\$ 153,222	\$ 2,542	60
Hotel	\$ 64,650	\$ 543	119
Large Institutional	\$ 150,375	\$ 1,833	82
Non-Food Retail	\$ 24,192	\$ 461	53
Recreation Centre	\$ 28,400	\$ 263	108
Secondary School	\$ 36,325	\$ 306	119

^{*}The B.C. Experience

3" XPS
½" exterior gwb
3 5/8" ss @ 16" o/c
3 ½" glass fibre batt
½" gwb


Surface Temperature = 18.2 C Reffective = 23.9 Wall thickness = 7.63"

ASHRAE RP 1365 - Thermal Performance of Building Envelope Details for Mid- and High-Rise Buildings (Final Report)

http://tc44.ashraetcs.org/research.html

Calculating Overall Thermal Transmittance (Climate Zones)

Calculating Overall Thermal Transmittance (Opaque – Above Grade)

Table 3.2.2.2.

Overall Thermal Transmittance of Above-ground Opaque Building Assemblies
Forming Part of Sentences 3.2.2.2.(1) and (2)

	Heating Degree-Days of <i>Building</i> Location,(1) in Celsius Degree-Days							
Above-ground Opaque Building Assembly	Zone 4: ⁽²⁾ < 3000	Zone 5: ⁽²⁾ 3000 to 3999	Zone 6: ⁽²⁾ 4000 to 4999	Zone 7A: ⁽²⁾ 5000 to 5999	Zone 7B: ⁽²⁾ 6000 to 6999	Zone 8: ⁽²⁾ ≥ 7000		
,	Maximum Overall Thermal Transmittance, in W/(m²·K)							
Walls	0.315	0.278	0.247	0.210	0.210	0.183		
Roofs	0.227	0.183	0.183	0.162	0.162	0.142		
Floors	0.227	0.183	0.183	0.162	0.162	0.142		

U 0.210 = R27

U 0.162 = R35

Calculating Overall Thermal Transmittance (What's in-What's out)

- * In
 - * Studs, joists, lintels, sill, plates
- * Sort of in
 - * Columns/beams parallel to the envelope
- * Sort of out
 - * Balcony slabs, beams/columns IF <2% of wall area
- * Out
 - * Pipes, ducts, HVAC units, shelf angles, anchors, ties

Calculating Overall Thermal Transmittance (What's in-What's out)

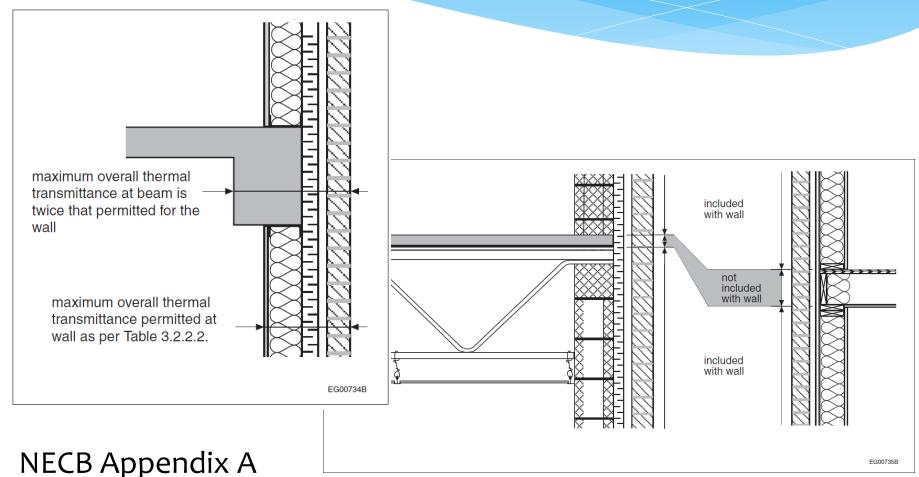
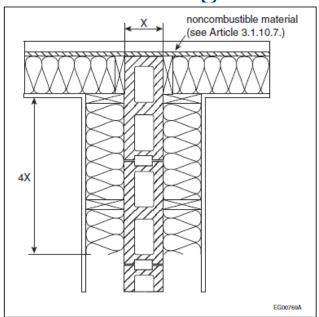


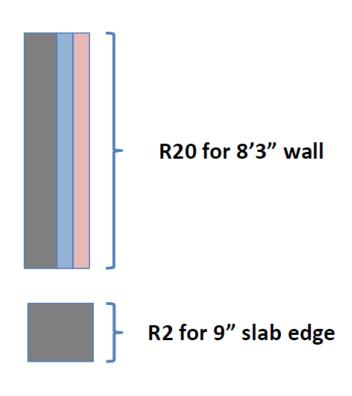
Figure A-3.1.1.7.(8)


Calculating Overall Thermal Transmittance (What's in-What's out)

Expectation is for continuous insulation

* Exception for structural members & switching insulation

from interior to exterior


 requires insulation for 4x the intersecting distance

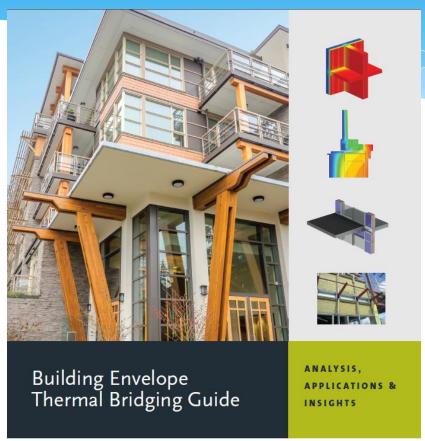

No exceptions for mechanical/electrical components

Figure taken from NBC 9.36 Appendix

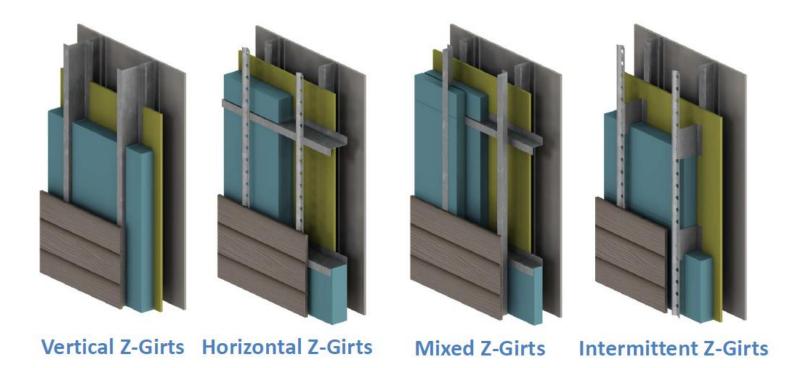
Calculating Overall Thermal Transmittance (What's in-What's out)

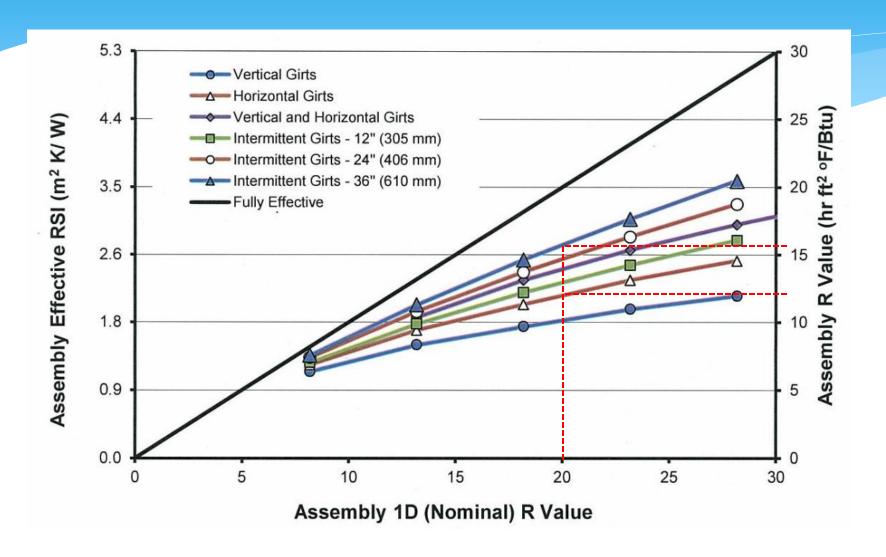
Practical Design Details

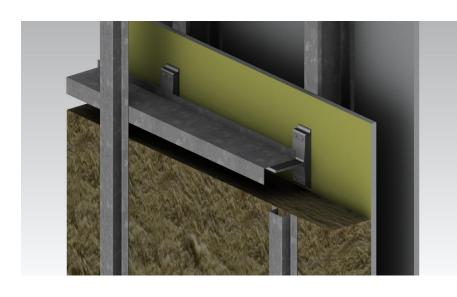
http://www.bchydro.com/content/dam/BCHydro/customer-portal/documents/powersmart/builders-developers/final-mh-bc-part-1-envelope-guide.pdf

Practical Design Details

With thanks to:

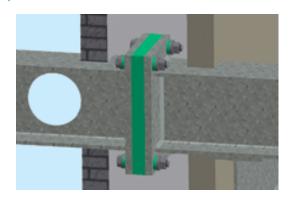


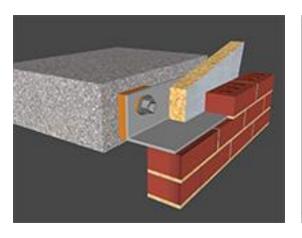




Practical Design Details Girt Systems

Practical Design Details Cladding Systems




Engineered Assemblies Inc.

Cascadia Clips

Practical Design Details Connection Details

Fabreeka

Armatherm

Practical Design Details Slabs/Balconies

June 2015

Practical Design Details Balconies



Balcony support

Balcony slab

Practical Design Details Metal Buildings

U-Facts™ Assembly Snapshot

eShadowall™ Wall System R-25 fiberglass insulation

U-Factor 0.27 SI U-Factor 0.048 imp R20.8 imp

Not intended for Construction. See test report for full details

Practical Design Details Insulated Panel Systems

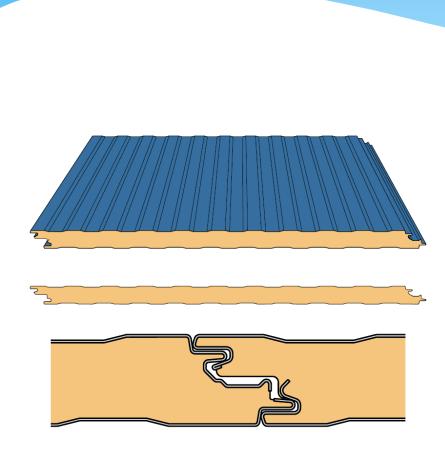
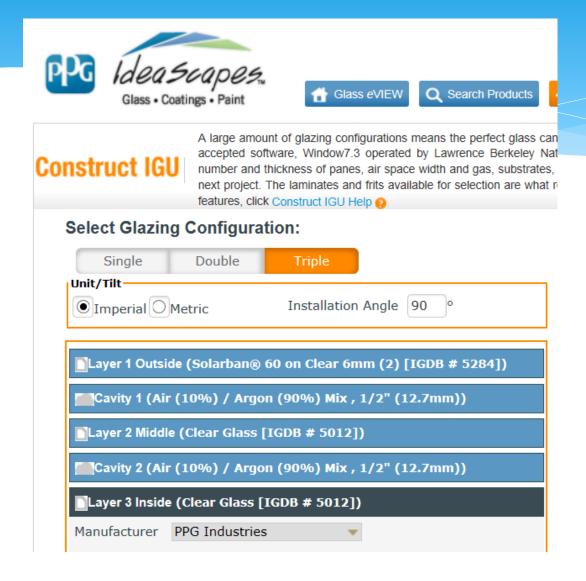


Image courtesy of METL-SPAN

Image courtesy of Canadian
Precast/Prestressed Concrete Institute

"I wonder if the lads know there is a big surfing competition this weekend"


Table 3.2.2.3.

Overall Thermal Transmittance of Fenestration
Forming Part of Sentences 3.2.2.3.(2) and (3)

		Heating Degree-Days of Building Location,(1) in Celsius Degree-Days												
Component	Zone 4:(2) < 3000	Zone 7B:(2) 6000 to 6999	Zone 8: ⁽²⁾ ≥ 7000											
		Maxin	num <i>Overall Thermal</i>	Transmittance, in W/	(m²-K)									
All fenestration	2.4	2.2	2.2	2.2 2.0	2.2 2.0	1.6								

Currently no Solar Heat Gain (SHGC) requirements

http://construct.ppg.com/

kawneer.com ADME130

40

AA™ 6400/6500/6600 Thermal Window

OCTOBER, 2015

THERMAL PERFORMANCE MATRIX (NFRC SIZE)

EC 97911-082

Thermal Transmittance 1 (BTU/hr • ft 2 • °F)

Glass U-Factor ³	Overall U-Factor 4
0.30	0.35
0.28	0.34
0.26	0.32
0.24	0.30
0.22	0.29
0.20	0.27
0.18	0.25
0.16	0.24
0.14	0.22
0.12	0.20
0.10	0.19

FIXED WINDOW WITH 1-3/4" TRIPLE GLAZING

NOTE: For glass values that are not listed, linear interpolation is permitted.

- 1. U-Factors are determined in accordance with NFRC 100.
- SHGC and VT values are determined in accordance with NFRC 200.
- Glass properties are based on center of glass values and are obtained from your glass supplier.
- Overall U-Factor, SHGC, and VT Matricies are based on the standard NFRC specimen size of 1200mm wide by 1500mm high (47-1/4" by 59-1/16").

COG= 0.18

(1.02)
System=0.25

(1.42)

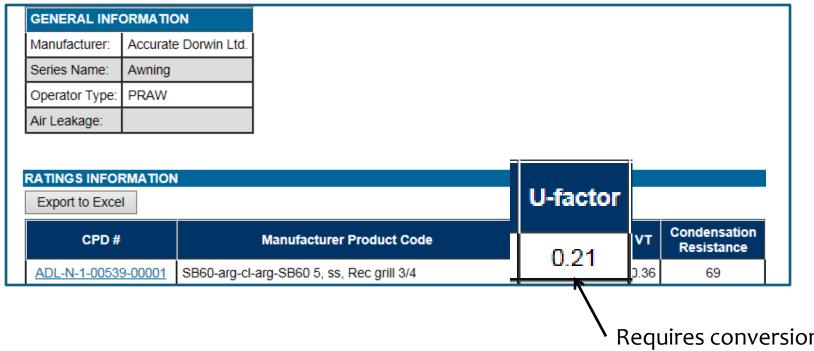
Manufacturer: Alumicor Limited

Series/Model #: 2600 Thermawall Curtainwall

Spacer: Superspacer

Operator Type: DDSG Sim Lab Code: SEEL

Model Size: 2000 x 2000 Report number: ALR11004


Thermal Break: V Date: 4/19/2011

	ised Date ing Proced		20	10										-Fact		
Mfr Product Code	Product Number	Gap 1 (mm)	Gap 2 (mm)	Gap Fill 1	Gap FIII 2	Emissivity Surface 2	Emissivity Surface 3	Emissivity Surface 4	Emissivity Surface 5	Tint	Spacer	Grid Type	Grid Size	tor (W/m²K	VT	*CR
SB60-arg-cl-arg-cl, ss _	0001	15.9	14.3	ARG	ARG	0.03				CL	ZF-D	N)	0.58	70
														1.28		

Energy Star Model Click on a model number for details	Brand	Product Name	U-factor (W/m² - K)	Solar Heat Gain (SHGC)	Energy Rating	ENERGY STAR Zone(s) 2015	ENERGY STAR Zone(s) 2010	ENERGY STAR Most Efficient 2015
325HF/272-ARG-CL- ARG-272,XL,FOAM	Duxton Windows and Doors	325 High Fixed	0.85	0.28	38	1 2 3	ABCD	Υ

http://oee.nrcan.gc.ca/pml-lmp/index.cfm?action=app.searchrecherche&appliance=WINDOWS

National Fenestration Rating Council (NFRC)

Requires conversion to SI

http://search.nfrc.org/search/searchDefault.aspx

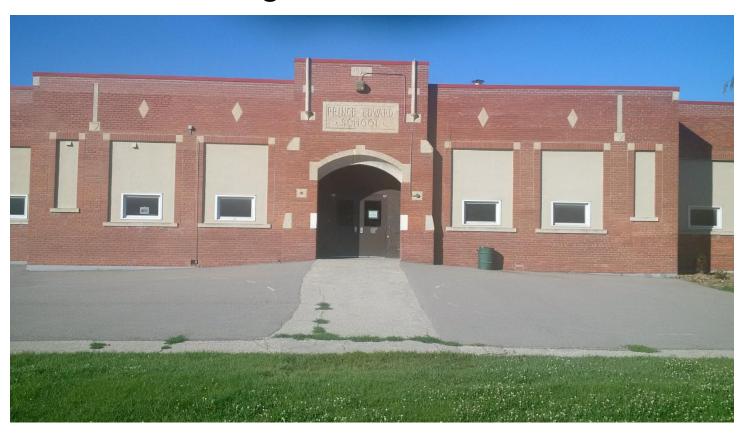
Fenestration (FDWR)

3.2.1.4. Allowable Fenestration and Door Area

1) The maximum allowable total vertical *fenestration* and door area to gross wall area ratio (FDWR), determined in accordance with Article 3.1.1.6., shall be as follows:

```
FDWR = 0.40 \ for \ HDD \leq 4000, FDWR = (2000 - 0.2 \cdot HDD) \ / 3000 \ for \ 4000 < HDD < 7000 \ , and FDWR = 0.20 \ for \ HDD \geq 7000,
```

where


HDD = the heating degree-days of the location of the *building* determined according to Sentence 1.1.4.1.(1). (See Appendix A.)

2) The total *skylight* area shall be less than 5% of the gross roof area as determined in Article 3.1.1.6.

FDWR
$$\leq$$
 (2000 – 0.2 x 5,670) / 3000 \leq 0.29 or 29% (Winnipeg)

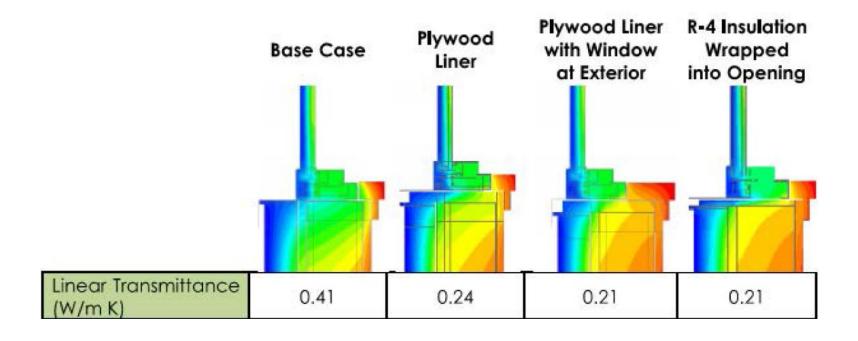
Fenestration (FDWR)

We don't want to go here!

Fenestration – Curtain Wall

MB Amendment

- 1(3) Sentence 1.4.1.2(1) is amended
 - (b) in the definition "fenestration" by adding "spandrels," after "sidelights,".


Fenestration means all building envelope assemblies, including their frames, that transfer visible light, such as windows, clerestories, skylights, translucent wall panels, glass blocks, transoms, sidelights, sliding, overhead or swinging glass doors, and glazed inserts in doors, etc.

Spandrels

Fenestration - Curtain Wall

Practical Design Details Some Good News!

Practical Design Details Some Good News

- Passive Solar Heat Gain
 - * Good window selection can provide net energy gain
 - * South exposure, Winnipeg
 - * Up to 100 kWh/m² net gain
- * Offset with solar shading
 - * Static
 - * Mechanical
 - * Dynamic

Practical Design Details Some Good News

Practical Design Details Some Good News

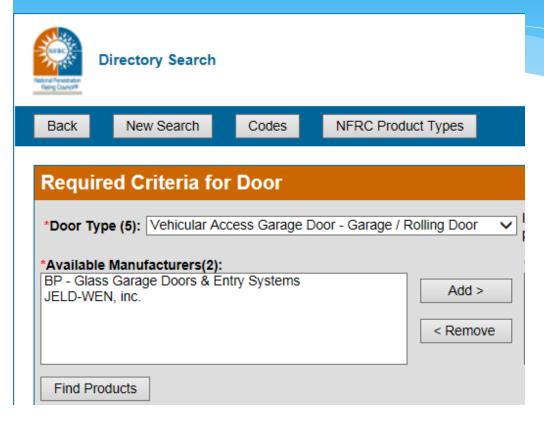
Before After

Doors

Table 3.2.2.4.

Overall Thermal Transmittance of Doors

Forming Port of Contents 2.0.0.4 (4)


Forming Part of Sentence 3.2.2.4.(1)

		Heating Degr	ee-Days of <i>Building</i> L	ocation,(1) in Celsius	Degree-Days			
Component	Zone 4: ⁽²⁾ < 3000							
		Maxin	num <i>Overall Thermal</i>	Transmittance, in W/	(m²·K)			
All doors	2.4	2.2	2.2	2.2	2.2	1.6		

Notes to Table 3.2.2.4.:

- (1) See Sentence 1.1.4.1.(1).
- (2) See A-Table 3.2.2.2. in Appendix A.
 - **2)** Doors need not comply with Sentence (1) where
 - a) their total area does not exceed 2% of the gross wall area calculated in accordance with Article 3.1.1.6., and
 - b) their overall thermal transmittance does not exceed 4.4 W/(m²·K).
 - **3)** Access hatches that are part of a *building envelope* shall be insulated to a nominal thermal transmittance of not more than $1.3 \text{ W/(m}^2 \cdot \text{K})$, exclusive of stiffeners or edge construction.

Doors

Information primarily on residential style entry and garage doors

National Fenestration Rating Council http://search.nfrc.org/search/cpd/cpd_search_productline.aspx

http://www.dasma.com/dasma-pages/DASMA-tehnical-data-sheets.asp

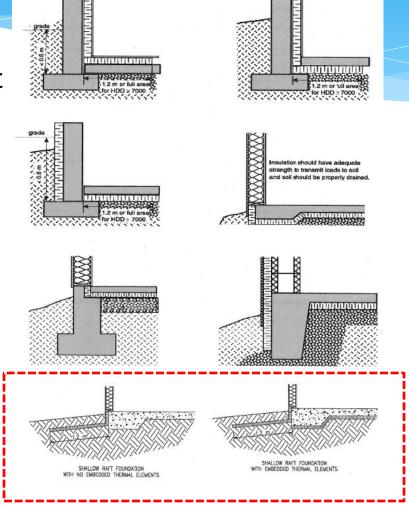
Table 3.2.3.1.

Overall Thermal Transmittance of Building Assemblies in Contact with the Ground
Forming Part of Sentences 3.2.3.1.(1), 3.2.3.2.(1) and 3.2.3.3.(1) to (3)

		Heating Degree-Days of Building Location,(1) in Celsius Degree-Days													
Assembly in Contact with the Ground	Zone 4: ⁽²⁾ < 3000	Zone 5:(2) 3000 to 3999	Zone 6: ⁽²⁾ 4000 to 4999	Zone 7A: ⁽²⁾ 5000 to 5999	Zone 7B:(2) 6000 to 6999	Zone 8: ⁽²⁾ ≥ 7000									
	Maximum Overall Thermal Transmittance, in W/(m²⋅K)														
Walls	0.568	0.379	0.284	0.284	0.284	0.210									
Roofs	0.568	0.379	0.284	0.284	0.284	0.210									
Floors	0.757 for 1.2 m	0.757 for 1.2 m	0.757 for 1.2 m	0.757 for 1.2 m	0.757 for 1.2 m	0.379 for full area									

Notes to Table 3.2.3.1.:

- (1) See Sentence 1.1.4.1.(1).
- (2) See A-Table 3.2.2.2. in Appendix A.

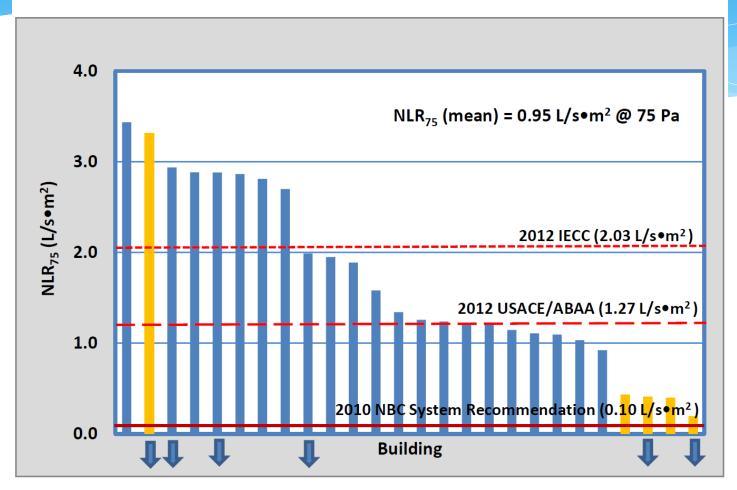

- Special Considerations
 - * Grade beams above/below grade
 - * Radiant floors
 - * Slab on Grade -depth

Manitoba amendment

2(2) Sentence 3.2.3.1(4) is replaced with the following:

- **4)** Where the top of the footing is less than 0.6 m below the exterior ground level, the same level of insulation stated in Sentence (1) shall be placed
 - a) on the top or bottom surface of the floor for a distance not less than 1.2m from the perimeter, or
 - b) below grade extending out from the face of the exterior wall for a distance of not less than 1.2.m (See Figure A-3.2.3.3. in Appendix A.)

Manitoba amendment



Air Leakage

- * Material properties in NBC
- * System properties in NBC & NECB
 - * Windows & Doors
 - * Walls/Roofs not so much
- * No whole building air tightness requirement in NBC or NECB
 - Recommendation in the Appendix of NBC

Air Leakage

Figure 4 – Normalized Leakage Rate for New Buildings (yellow bars)

An Investigation of Airtightness in Manitoba's Commercial Building Sector Red River College/Proskiw Engineering 2015

Air Leakage

Some leaks are more obvious than others!

Simple Trade Off

- * \sum (summation) UxA (proposed) $\leq \sum$ UxA (prescriptive)
 - * Some exclusions

```
Example: (opaque wall area \le 0.21)

10% of wall area U=0.24 (R23.6)

40% of wall area U=0.23 (R24.7)

50% of wall area U=0.18 (R31.5)

Total U=0.206 (R27.6)
```

Simple Trade Off (Fenestration/Opaque)

Building with 25% glazing

Prescriptive $\sum UxA$

 $75\% \times 0.21 + 25\% \times 2.0 = 0.68$

Proposed ∑ UxA

U value of opaque wall = 0.28 (R20)

 $75\% \times 0.28 + 25\% \times Uwindow \le 0.68$

U window (max) = 1.88

Simple Trade Off (Fenestration/Opaque)

Building with 40% glazing Prescriptive \sum UxA 71% x 0.21 + 29% x 2.0 = 0.73 (maximum FDWR)

Proposed \sum UxA U value of window= 1.4 60% x Uwall + 40% x 1.4 \leq 0.73 U wall (max) = 0.28 (R20.0)

Detailed Trade Off

- * Reference building is still from prescriptive approach
- * Trade off between any **envelope** components
- * Proposed building must not use more energy than the prescriptive building
- * Complex calculations when considering above grade vs components in contact with the ground
- Quickly leads to performance path with modeling

Checklists

Project Nam	e: Date:					
	Example of Building Envelope Che	cklist				
Project Descri	ption:					
Project Addres	55:					
Type of Buildin	ng (new or addition to existing building):					
Heating Degre	e-Days (HDD) of Building Location:					
Climate Zone	(based on HDD of building location):					
Conditioned A	rea, m²:					
Complianc	e path(s) selected: Prescriptive Sir	nple Trade-	off			
	Detailed Trade-off Pe	rformance				
rescriptiv	re Path (NECB Section 3.2.)					
NECB	Compliance Description	Compi	lance Ach	ance Achieved?		
Requirement		Yes	No	N/A		
3.2.1.1.	The building envelope is designed to protect insulation materials. List applicable exceptions:					
	Interior building components and structural members that intersect or partly penetrate the building envelope do not break the continuity of the insulation and do not increase the overall thermal transmittance at their					

Taken from NECB User's Guide 2014

projected area to more than is permitted.

List applicable exceptions:

3.2.1.2.

Checklists

X	ME	B 20	13 D	ocui	nen	tation	Sub	m	issio	n Cł	eck	dis	t (fo	or NC	c of I	Part	3 an	d so	me	Part	9 No	n-res	idential)
Property Address	s:															E	Buildi	ng F	ern	nit			`
Specific Address	s:															Α	pplic	atio	n No	0.:			
This form is	to b	e com	ıplete	d <u>dic</u>	itally	<u>/</u> . For	ease	e o	f use,	dro	bo	xes	an	d p	ор-і	ıp i	nstr	uct	ion	s aı	e in	clud	ed.
Requirement for I	MECE	Comp	liance	:																			
In accordance wit	th Mar	itoba F	Regula	tion M	R 21	3/2013	Manito	oba	Energ	v Coo	le for	Bu	ildin	IS.									
1 Subject to the Buildings and Fire	amen	dments	[], tl	he Na	tional	Energy	Code	of	Canad	a for	Buildi	ings	201	1, is					adia	n Co	mmis	sion	on
and, the following	delive	rables	are re	equire	d to sl	now co	mpliar	nce	with th	nis co	de.												
Building Use, Are	a & P	erforma	ance Ir	nforma	ation					Ty	pe of	f Wo	ork										
Primary Use & Ar	rea:					1		7		Tot	al Bu	ildir	g A	rea	(m ²)								
Secondary Use &	& Area							—ï		Allo	wabl	e Fe	enes	trati	on a	nd [oor	Rati	o (9	6):			
Tertiary Use & Ar	ea:									Sky	/light-	Roo	of Ar	ea F	Ratio	(%)							
Additional Use & /	Area:									Sei	mihea	ated	Spa	ace /	4rea	(m ²	²):						
Additional Use & A	Area:									Re	siden	tial	Con	ditio	ned	Spa	ce A	rea ((m^2)):			
Total Building Are	ea (m²):																					
Overall Thermal	Transı	nittanc	e (in V	V/(m²	K))																		
Above Groun	nd Opa	ique As	ssemb	olies		Wall	S			Ro	ofs				Flo	ors							
Assemblies Fenestration		tact wi	th the	Grour	nd Door	Wall s	S			Ro	ofs				Floo	ors							

Performance

- * Still based on Prescriptive values
- * Unlimited trade-offs between components and systems
- Design Flexibility
- * Case Studies- Sherwood Developments

Additional Training

- * CSC January 20, 2016
 - Opportunities & Insights with Energy Modeling
- Red River College
 - Intro to the Manitoba Energy Code for Buildings
 - * Section 9.36 Energy Efficiency in Housing and Small Buildings (sold out-waiting list)
 - * Manitoba Energy Code Exams (MECB or Section 9.36)
 - * Introduction to CANQUEST Modeling
 - Advanced CANQUEST Modeling

Questions/Comments?

